Jumat, 19 Februari 2016

ACTIVATION ENERGY

TEORI TUMBUKAN UNTUK AKTIVASI ENERGI

1. Teori Tumbukan
Menurut teori, sebelum bereaksi partikel-partikel zat pereaksi akan mengalami tumbukan. Tidak semua tumbukan berhasil membentuk zat hasil reaksi. Tumbukan yang baik adalah yang mampu menghasilkan energi. Energi hasil tumbukan itulah yang digunakan untuk merenggangkan atau memutuskan ikatan atom-atom dalam zat pereaksi pada awal proses reaksi kimia. Selanjutnya energi ini disebut energi aktivasi, yaitu energi minimum yang diperlukan oleh zat-zat pereaksi untuk membentuk zat hasil reaksi.

Tumbukan dengan posisi yang benar dan salah dapat ditunjukkan dengan gambar berikut.

Gambar 1. Posisi Tumbukan yang baik antara spesies pereaksi NO dan Cl2
dalam reaksi NO+Cl2 → NOCl+ Cl

2. Teori Keadaan Transisi
Menurut teori ini, sebelum bereaksi zat pereaksi bergerak saling mendekat kemudian berinteraksi membentuk kompleks molekul. Selama berinteraksi terjadi transformasi bentuk dari energi kinetik ke energi potensial. Energi tersebut diserap oleh kompleks molekul untuk membentuk energi potensial tinggi yang mudah bereaksi menghasilkan zat hasil reaksi. Kompleks molekul yang berenergi tinggi dan tidak stabil ini disebut kompleks molekul teraktivasi atau kompleks molekul yang berenergi tinggi.
Berdasarkan teori keadaan transisi, reaksi kimia dapat dilihat sebagai dua tahap. Tahap pertama perubahan pereaksi menjadi keadaan transisi, dan tahap kedua merupakan perubahan keadaan transisi membentuk zat produk. Untuk lebih jelasnya dapat digambarkan sebagai berikut.
Tahap 1. Pembentukan keadaan transisi dari pereaksi
Tahap 2. Perubahan keadaan transisi membentuk produk
3. Hubungan Tumbukan dengan Laju Reaksi
Suatu reaksi kimia akan dapat berlangsung bila antar zat pereaksi saling mendekat dan kemudian melakukan tumbukan. Tumbukan yang menghasilkan reaksi kimia ditentukan oleh:
a. jumlah energi minimumnya (energi aktivasi) dapat terlewati; dan
b. posisi yang tepat dalam melakukan tumbukannya.
Semakin cepat/banyak tumbukan yang terjadi maka reaksi kimia akan cepat berlangsung, dengan kata lain, semakin cepat tumbukan laju reaksi makin cepat pula.
4. Faktor-faktor yang mempengaruhi Jumlah Tumbukan
a. Pengaruh suhu
Bila suhu dinaikkan, energi kinetik zat pereaksi akan meningkat sehingga tumbukan yang terjadi juga akan semakin banyak. Peningkatan suhu ini juga dapat memicu terbentuknya energi yang lebih besar dari energi aktivasi reaksi. Untuk lebih jelasnya dapat dilihat pada gambar berikut kurva fraksi molekul terhadap energi kinetik pada suhu T1 yang lebih kecil dari T2 sebagai berikut:
Gambar 2. Kurva fraksi molekul n terhadap energi kinetik pada suhu T
Laju reaksi umumya berubah 2 kali cepat untuk tiap kenaikan suhu 10 .
Pengaruh suhu terhadap laju reaksi dapat dirumuskan sebagai berikut:
rt= r0×2T2−T110, dengan:rt=laju reaksi pada suhu t;r0=laju reaksi pada suhu awal;T1= suhu awal; danT2= suhu akhir.
b. Pengaruh Konsentrasi
Semakin tinggi konsentrasi suatu zat, maka jumlah partikelnya akan semakin banyak, akibatnya jumlah tumbukan persatuan waktu juga akan semakin banyak. Misal dalam suatu ruangan terdapat sejumlah partikel A dan B maka jumlah tumbukan antara partikel A dan partikel B dalam satu satuan waktu adalah satu kali. Jika pada suhu tetap dan jumlah partikel A juga tetap sedangkan jumlah partikel B dibuat menjadi 2x jumlah semula maka jumlah tumbukan persatuan waktu menjadi 2x semula. Jika jumlah partikel A dan B masing-masing diubah menjadi 2x semula maka jumlah tumbukan persatuan waktu menjadi 4x dari semula. Jadi jumlah tumbukan antara partikel A dan B sebanding dengan jumlah partikel A kali jumlah partikel B.
Bila jumlah molekul A dan B dinyatakan dalam bentuk konsentrasinya, maka:
jumlah tumbukan persatuan waktu = [A][B], dimana [A] adalah konsentrasi A dan [B] adalah konsentrasi B.
Bila molekul-molekul yang bertumbukan itu ada tiga jenis, misal A, B dan C, maka:
jumlah tumbukan persatuan waktu = v = k[A][B][C], dimana v = laju tumbukan, k = tetapan laju tumbukan.
c. Pengaruh Luas Permukaan Sentuhan
Bila luas permukaan partikel pereaksi besar, maka bagian yang mampu bertumbukan juga akan semakin luas pula. Hal tersebut tentu saja membuat jumlah tumbukan yang terjadi akan semakin banyak.
d. Pengaruh Katalis
Katalis adalah senyawa pemercepat reaksi yang mampu terbentuk kembali di akhir reaksi. Dengan kata lain, selama mempercepat proses reaksi, katalis tidak ikut bereaksi. Dalam hal ini, katalis berperan menurunkan energi aktivasi. Katalis dapat mengubah langkah-langkah reaksi dari yang berenergi aktivasi tinggi ke energi aktivasi rendah. Bila dalam campuran zat pereaksi diberi katalisator maka jumlah tabrakan antarpartikel pereaksi akan menghasilkan energi yang lebih besar dari energi aktivasi reaksi.

  
Orde reaksi pada materi Laju reaksi
Orde reaksi adalah banyaknya faktor konsentrasi zat reaktan yang mempengaruhi kecepatan reaksi.
Penentuan orde reaksi tidak dapat diturunkan dari persamaan reaksi tetapi hanya dapat ditentukan berdasarkan percobaan.



Suatu reaksi yang diturunkan secara eksperimen dinyatakan dengan rumus kecepatan reaksi :
A + B ----> C
v = k (A) (B) 2

persamaan tersebut mengandung pengertian reaksi orde 1 terhadap zat A dan merupakan reaksi orde 2 terhadap zat B. Secara keselurahan reaksi tersebut adalah reaksi orde 3.


Contoh soal:
Dari reaksi 2NO(g) + Br2(g) ®   2NOBr(g)
dibuat percobaan dan diperoleh data sebagai berikut:
No.(NO) mol/l(Br2) mol/lKecepatan Reaksi
mol / 1 / detik
1.0.10.112
2.0.10.224
3.0.10.336
4.0.20.148
5.0.30.1108
Pertanyaan:
a. Tentukan orde reaksinya !
b. Tentukan harga k (tetapan laju reaksi) !

Jawab:
a.Pertama-tama kita misalkan rumus kecepatan reaksinya adalah V = k(NO)x(Br2)y : jadi kita harus mencari nilai x den y.
Untuk menentukan nilai x maka kita ambil data dimana konsentrasi terhadap Br2 tidak berubah, yaitu data (1) dan (4).
Dari data ini terlihat konsentrasi NO naik 2 kali sedangkan kecepatan reaksinya naik 4 kali maka :

2x = 4 ®   x = 2 (reaksi orde 2 terhadap NO)

Untuk menentukan nilai y maka kita ambil data dimana konsentrasi terhadap NO tidak berubah yaitu data (1) dan (2). Dari data ini terlihat konsentrasi Br2 naik 2 kali, sedangkan kecepatan reaksinya naik 2 kali, maka :

2y = 2 ®   y = 1 (reaksi orde 1 terhadap Br2)

Jadi rumus kecepatan reaksinya : V = k(NO)2(Br2) (reaksi orde 3)
b.Untuk menentukan nilai k cukup kita ambil salah satu data percobaan saja misalnya data (1), maka:
V = k(NO)2(Br2)
12 = k(0.1)2(0.1)

k = 12 x 103 mol-212det-1

 Faktor - faktor yang mempengaruhu laju reaksi

Beberapa faktor yang mempengaruhi kecepatan reaksi antara lain konsentrasi, sifat zat yang bereaksi, suhu dan katalisator.


A. KONSENTRASI


Dari berbagai percobaan menunjukkan bahwa makin besar konsentrasi zat-zat yang bereaksi makin cepat reaksinya berlangsung. Makin besar konsentrasi makin banyak zat-zat yang bereaksi sehingga makinbesar kemungkinan terjadinya tumbukan dengan demikian makin besar pula kemungkinan terjadinya reaksi.


B. SIFAT ZAT YANG BEREAKSI

Sifat mudah sukarnya suatu zat bereaksi akan menentukan kecepatan berlangsungnya reaksi.

Secara umum dinyatakan bahwa:
-Reaksi antara senyawa ion umumnya berlangsung cepat.
Hal ini disebabkan oleh adanya gaya tarik menarik antara ion-ion yang muatannya berlawanan.

Contoh: Ca2+(aq) + CO32+(aq) ® CaCO3(s)
Reaksi ini berlangsung dengan cepat.


- Reaksi antara senyawa kovalen umumnya berlangsung lambat.
Hal ini disebabkan karena untuk berlangsungnya reaksi tersebut dibutuhkan energi untuk memutuskan ikatan-ikatan kovalen yang terdapat dalam molekul zat yang bereaksi.

Contoh: CH4(g) + Cl2(g) ® CH3Cl(g) + HCl(g)
Reaksi ini berjalan lambat reaksinya dapat dipercepat apabila diberi energi misalnya cahaya matahari.



C. SUHU

Pada umumnya reaksi akan berlangsung lebih cepat bila suhu dinaikkan. Dengan menaikkan suhu maka energi kinetik molekul-molekul zat yang bereaksi akan bertambah sehingga akan lebih banyak molekul yang memiliki energi sama atau lebih besar dari Ea. Dengan demikian lebih banyak molekul yang dapat mencapai keadaan transisi atau dengan kata lain kecepatan reaksi menjadi lebih besar. Secara matematis hubungan antara nilai tetapan laju reaksi (k) terhadap suhu dinyatakan oleh formulasi ARRHENIUS:

k = A . e-E/RT

dimana:

k : tetapan laju reaksi
A : tetapan Arrhenius yang harganya khas untuk setiap reaksi
E : energi pengaktifan
R : tetapan gas universal = 0.0821.atm/moloK = 8.314 joule/moloK
T : suhu reaksi (oK)




D. KATALISATOR

Katalisator adalah zat yang ditambahkan ke dalam suatu reaksi dengan maksud memperbesar kecepatan reaksi. Katalis terkadang ikut terlibat dalam reaksi tetapi tidak mengalami perubahan kimiawi yang permanen, dengan kata lain pada akhir reaksi katalis akan dijumpai kembali dalam bentuk dan jumlah yang sama seperti sebelum reaksi.

Fungsi katalis adalah memperbesar kecepatan reaksinya (mempercepat reaksi) dengan jalan memperkecil energi pengaktifan suatu reaksi dan dibentuknya tahap-tahap reaksi yang baru. Dengan menurunnya energi pengaktifan maka pada suhu yang sama reaksi dapat berlangsung lebih cepat.
 E. Pengaruh luas Prmukaan zat
Semakin luas permukaan maka laju reaksi akan semakin cepat
Bagaimana pengaruh ukuran kepingan zat padat terhadap laju reaksi?
Misalkan, kita mengamati reaksi antara batu gamping dengan larutan asam
klorida (HCl). Percobaan dilakukan sebanyak dua kali, masing-masing dengan
ukuran keping batu gamping yang berbeda, sedangkan faktor-faktor lainnya
seperti massa batu gamping, volume larutan HCl, konsentrasi larutan HCl dan
suhu dibuat sama. Dengan demikian, perubahan laju reaksi semata-mata
sebagai akibat perbedaan ukuran kepingan batu gamping (kepingan halus dan
kepingan kasar). Dalam hal ini, ukuran keping batu gamping kita sebut
variabel manipulasi, perubahan laju reaksi (waktu reaksi) disebut variabel
respon, dan semua faktor lain yang dibuat tetap (sama) disebut variabel
kontrol.
Mengapa kepingan yang lebih halus bereaksi lebih cepat? Pada
campuran pereaksi yang heterogen, reaksi hanya terjadi pada bidang batas
campuran yang selanjutnya kita sebut bidang sentuh. Oleh karena itu, makin
Kim. 10. Laju Reaksi 28
luas bidang sentuh makin cepat bereaksi. Jadi makin halus ukuran kepingan
zat padat makin luas permukaannya.
Pengaruh luas permukaan banyak diterapkan dalam industri, yaitu
dengan menghaluskan terlebih dahulu bahan yang berupa padatan sebelum
direaksikan. Ketika kita makan, sangat dianjurkan untuk mengunyah makanan
hingga lembut, agar proses reaksi di dalam lambung berlangsung lebih cepat
dan penyerapan sari makanan lebih sempurna.
Apa hubungannya dengan tumbukan? Makin luas permukaan gamping,
makin luas bidang sentuh dengan asam klorida makin besar, sehingga jumlah
tumbukannya juga makin besar. Artinya makin kecil ukuran, makin luas

permukaannya, makin banyak tumbukan, makin cepat terjadinya reaksi.

 Teori Tumbukan pada Laju reaksi

Teori tumbukan didasarkan atas teori kinetik gas yang mengamati tentang bagaimana suatu reaksi kimia dapat terjadi. Menurut teori tersebut kecepatan reaksi antara dua jenis molekul A dan B sama dengan jumiah tumbukan yang terjadi per satuan waktu antara kedua jenis molekul tersebut. Jumlah tumbukan yang terjadi persatuan waktu sebanding dengan konsentrasi A dan konsentrasi B. Jadi makin besar konsentrasi A dan konsentrasi B akan semakin besar pula jumlah tumbukan yang terjadi.
TEORI TUMBUKAN INI TERNYATA MEMILIKI BEBERAPA KELEMAHAN, ANTARA LAIN :
- tidak semua tumbukan menghasilkan reaksi sebab ada energi tertentu yang harus dilewati (disebut energi aktivasi = energi pengaktifan) untak dapat menghasilkan reaksi. Reaksi hanya akan terjadi bila energi tumbukannya lebih besar atau sama dengan energi pengaktifan (Ea).
- molekul yang lebih rumit struktur ruangnya menghasilkan tumbukan yang tidak sama jumlahnya dibandingkan dengan molekul yang sederhana struktur ruangnya.
Teori tumbukan di atas diperbaiki oleh tcori keadaan transisi atau teori laju reaksi absolut. Dalam teori ini diandaikan bahwa ada suatu keadaan yang harus dilewati oleh molekul-molekul yang bereaksi dalam tujuannya menuju ke keadaan akhir (produk). Keadaan tersebut dinamakan keadaan transisi. Mekanisme reaksi keadaan transisi dapat ditulis sebagai berikut:
A + B ®   T* --> C + D
dimana:

- A dan B adalah molekul-molekul pereaksi
- T* adalah molekul dalam keadaan transisi
- C dan D adalah molekul-molekul hasil reaksi



Kamis, 18 Februari 2016

CONCEPT Photon Energy business in the feedback on the momentum and impulse







KONSEP  kerja Energi Foton

KONSEP KERJA-ENERGI Merupakan konsep alternatif untuk menyelesaikan persoalan gerak Merupakan konsep alternatif untuk menyelesaikan persoalan gerak Dikembangkan dari konsep gaya dan gerak Dikembangkan dari konsep gaya dan gerak Merupakan penghubung antara mekanika Newton dengan bagian ilmu fisika yang lain seperti gelombang, fisika panas, dan listrik magnet Merupakan penghubung antara mekanika Newton dengan bagian ilmu fisika yang lain seperti gelombang, fisika panas, dan listrik magnet Penghubung antara ilmu fisika dengan bidang ilmu lainnya (kimia, elektro, mesin, ilmu gizi dll) Penghubung antara ilmu fisika dengan bidang ilmu lainnya (kimia, elektro, mesin, ilmu gizi dll) 
 
Apakah kerja itu? Orang memindahkan bangku dari satu tempat ke tempat lain Orang memindahkan bangku dari satu tempat ke tempat lain Mesin traktor memindahkan tanah Mesin traktor memindahkan tanah Semut membawa makanan Semut membawa makanan Orang, mesin traktor dan semut melakukan usaha/kerja (mekanik) Orang, mesin traktor dan semut melakukan usaha/kerja (mekanik) Dua komponen yang harus ada dalam usaha/kerja: Dua komponen yang harus ada dalam usaha/kerja: pelaku yang memberikan gaya pada benda pelaku yang memberikan gaya pada benda dan perpindahan benda dan perpindahan benda 
 
APAKAH ENERGI ITU? Seseorang yang sedang mengalami kelaparan tidak dapat bekerja dengan baik Seseorang yang sedang mengalami kelaparan tidak dapat bekerja dengan baik Seorang tukang becak biasanya makannya banyak agar memperoleh banyak energi Seorang tukang becak biasanya makannya banyak agar memperoleh banyak energi Sebuah mobil memerlukan bahan bakar sebagai sumber energi agar dia bisa bergerak Sebuah mobil memerlukan bahan bakar sebagai sumber energi agar dia bisa bergerak Energi listrik diperlukan agar alat-alat listrik dapat berkerja Energi listrik diperlukan agar alat-alat listrik dapat berkerja Energi adalah suatu besaran yang menunjukkan kemampuan untuk melakukan kerja Energi adalah suatu besaran yang menunjukkan kemampuan untuk melakukan kerja  

DUA BENTUK ENERGI MEKANIK ENERGI KINETIK: energi yang terkandung dalam objek yang bergerak ENERGI KINETIK: energi yang terkandung dalam objek yang bergerak Palu digerakkan agar mempunyai energi kinetik sehingga ketika palu mengenai paku, palu dapat melakukan kerja terhadap paku sehingga paku dapat menancap pada dinding Palu digerakkan agar mempunyai energi kinetik sehingga ketika palu mengenai paku, palu dapat melakukan kerja terhadap paku sehingga paku dapat menancap pada dinding ENERGI POTENSIAL: energi yang terkandung dalam suatu sistem/benda karena konfigurasi sistem tersebut atau karena posisi benda tersebut ENERGI POTENSIAL: energi yang terkandung dalam suatu sistem/benda karena konfigurasi sistem tersebut atau karena posisi benda tersebut Untuk menancapkan tiang-tiang pancang pada pekerjaan konstruksi bangunan, beban ditarik ke atas kemudian dilepaskan sehingga menumbuk tiang pancang, Untuk menancapkan tiang-tiang pancang pada pekerjaan konstruksi bangunan, beban ditarik ke atas kemudian dilepaskan sehingga menumbuk tiang pancang, 
 
BENTUK ENERGI LAIN Energi listrik: energi potensial elektromagnetik dan energi kinetik elektron yang mengalir pada penghantar dan pada peralatan listrik Energi listrik: energi potensial elektromagnetik dan energi kinetik elektron yang mengalir pada penghantar dan pada peralatan listrik Energi kimia: energi potensial elektromagnetik dan energi kinetik pada atom dan molekul Energi kimia: energi potensial elektromagnetik dan energi kinetik pada atom dan molekul Energi dalam gas ideal: energi kinetik partikel- partikel gas ideal Energi dalam gas ideal: energi kinetik partikel- partikel gas ideal Energi nuklir: energi potensial inti (kuat dan lemah) dalam bentuk energi ikat inti atau massa (dari kesetaraan massa dengan energi) Energi nuklir: energi potensial inti (kuat dan lemah) dalam bentuk energi ikat inti atau massa (dari kesetaraan massa dengan energi)  

BAGAIMANA MEKANISME PERUBAHAN BENTUK ENERGI? KERJA OLEH GAYA-GAYA DAPAT MERUBAH BENTUK ENERGI KERJA OLEH GAYA-GAYA DAPAT MERUBAH BENTUK ENERGI INTERAKSI DAPAT MERUBAH BENTUK ENERGI INTERAKSI DAPAT MERUBAH BENTUK ENERGI Contoh: PLTA Contoh: PLTA Air sungai di tempat yang tinggi mempunyai energi potensial yang besar Air sungai di tempat yang tinggi mempunyai energi potensial yang besar Jika air sungai mendapati terjunan, maka gaya gravitasi merubah energi potensial air terjun menjadi energi kinetik Jika air sungai mendapati terjunan, maka gaya gravitasi merubah energi potensial air terjun menjadi energi kinetik Ketika air terjun ini menumbuk turbin, maka kerja oleh gaya tumbukan ini merubah enrgi kinetik air terjun menjadi energi kinetik turbin Ketika air terjun ini menumbuk turbin, maka kerja oleh gaya tumbukan ini merubah enrgi kinetik air terjun menjadi energi kinetik turbin Kerja oleh turbin yang membawa kumparan untuk berputar merubah energi kinetik turbin menjadi energi listrik Kerja oleh turbin yang membawa kumparan untuk berputar merubah energi kinetik turbin menjadi energi listrik 
 
ENERGI KINETIK Pada kotak bermassa m bekerja gaya neto F Pada kotak bermassa m bekerja gaya neto F Hukum II Newton: a= F/m Kerja oleh gaya F : W=F d Energi Kinetik: EK = ½ m v 2 F vtvt d vovo m Kerja oleh gaya neto menghasilkan perubahan energi kinetik

Kekekalan Energi Mekanik Gaya Konservatif: Gaya Konservatif: Kerja oleh gaya konservatif tidak tergantung lintasan, tapi hanya tergantung titik awal dan akhirnya saja Kerja oleh gaya konservatif tidak tergantung lintasan, tapi hanya tergantung titik awal dan akhirnya saja Contoh: gaya gravitasi, gaya pegas Contoh: gaya gravitasi, gaya pegas Jika gaya total merupakan gaya konservatif maka: Jika gaya total merupakan gaya konservatif maka: (EP + EK) akhir = (EP + EK) awal (EP + EK) akhir = (EP + EK) awal
D A Y A Daya adalah laju transfer energi dari satu sistem ke sistem lain. Jika sebuah gaya F bekerja pada suatu partikel dengan kecepatan v, maka daya yang dihasilkan adalah : Satuan SI adalah watt (W) : Contoh : Sebuah mobil sedan dapat menghasilkan gaya sebesar 2x10 4 N. Jika mobil tersebut melaju dengan kelajuan rata-rata 40 m/s tentukan daya mobil tersebut. Pertanyaan yang sama untuk sebuah truk yang dapat menghasilkan gaya 10 5 N yang melaju dengan kelajuan rata-rata 10 m/s    
Konsep Impuls-Momentum Dalam proses yang sebenarnya seringkali didapatkan keadaan Dalam proses yang sebenarnya seringkali didapatkan keadaan Gaya bekerja dalam waktu yang sangat singkat, seperti dalam proses tumbukan atau peluruhan Gaya bekerja dalam waktu yang sangat singkat, seperti dalam proses tumbukan atau peluruhan Melibatkan banyak massa sekaligus Melibatkan banyak massa sekaligus Konsep Impuls-Momentum memudahkan kita untuk menyelesaikan persoalan seperti ini. Konsep Impuls-Momentum memudahkan kita untuk menyelesaikan persoalan seperti ini. Tujuan Instruksional: Setelah pertemuan ini mahasiswa dapat menentukan besaran-besaran mekanika dengan menggunakan konsep Impuls- Momentum 
 
Gaya Impulsif: gaya yang sangat besar tetapi berlansung dalam waktu yang sangat singkat. Jika pada suatu benda bekerja gaya impulsif maka gaya lain dapat diabaikan Impuls : Contoh: Manchester United  menendang bola mati sehingga sesaat setelah ditendang, bola berkelajuan 20 m/s. Jika massa bola 0,8 kg, dan waktu kontak antara kaki dan bola adalah 0,02 sekon, tentukan gaya rata-rata yang dilakukan Zidane pada bola! Bandingkan besar gaya tersebut dengan berat bola! (Ingat:impuls dan momentum merupakan besaran-besaran vektor) IMPULS = PERUBAHAN MOMENTUM

TUMBUKAN Gaya-gaya yang bekerja pada proses tumbukan adalah pasangan gaya aksi- reaksi. Berlaku hukum kekekalan momentum total Elasitisitas e : perbandingan besar kecepatan relatif antar kedua benda sesudah dan sebelum tumbukan. Harga e berkisar antara 0 (tak lenting) dan 1 (lenting)  
 Contoh: Sebuah peluru bermassa 20 gram ditembakkan pada bandul balistik bermassa 1980 gram sehingga akhirnya peluru bersarang dalam bandul. Jika sesaat setelah tumbukan kecepatan bandul dan peluru adalah 2 m/s, tentukan kecepatan peluru sebelum menumbuk bandul Sebuah peluru bermassa 20 gram ditembakkan pada bandul balistik bermassa 1980 gram sehingga akhirnya peluru bersarang dalam bandul. Jika sesaat setelah tumbukan kecepatan bandul dan peluru adalah 2 m/s, tentukan kecepatan peluru sebelum menumbuk bandul

PENUTUP Konsep Kerja-Energi dan Impuls- Momentum adalah konsep alternatif untuk menyelesaikan masalah mekanika Konsep Kerja-Energi dan Impuls- Momentum adalah konsep alternatif untuk menyelesaikan masalah mekanika    
  
 sekilas tumbukan foton dan energi foton
 
Foton yang dipancarkan dalam berkas 
koheren laser
Foton adalah partikel elementer dalam fenomena elektromagnetik. Biasanya foton dianggap sebagai pembawa radiasi elektromagnetik, seperti cahaya, gelombang radio, dan Sinar-X. Foton berbeda dengan partikel elementer lain seperti elektron dan quark, karena ia tidak bermassa dan dalam ruang vakum foton selalu bergerak dengan kecepatan cahaya, c. Foton memiliki baik sifat gelombang maupun partikel ("dualisme gelombang-partikel").
Sebagai gelombang, satu foton tunggal tersebar di seluruh ruang dan menunjukkan fenomena gelombang seperti pembiasan oleh lensa dan interferensi destruktif ketika gelombang terpantulkan saling memusnahkan satu sama lain.
Sebagai partikel, foton hanya dapat berinteraksi dengan materi dengan memindahkan energi sejumlah:
E=\frac{hc}{\lambda},
di mana h adalah konstanta Planck, c adalah laju cahaya, dan \lambda adalah panjang gelombangnya.
Selain energi partikel foton juga membawa momentum dan memiliki polarisasi. Foton mematuhi hukum mekanika kuantum, yang berarti kerap kali besaran-besaran tersebut tidak dapat diukur dengan cermat. Biasanya besaran-besaran tersebut didefinisikan sebagai probabilitas mengukur polarisasi, posisi, atau momentum tertentu.
Sebagai contoh, meskipun sebuah foton dapat mengeksitasi satu molekul tertentu, sering tidak mungkin meramalkan sebelumnya molekul yang mana yang akan tereksitasi.
Deskripsi foton sebagai pembawa radiasi elektromagnetik biasa digunakan oleh para fisikawan. Namun dalam fisika teoretis sebuah foton dapat dianggap sebagai mediator buat segala jenis interaksi elektromagnetik, seperti medan magnet dan gaya tolak-menolak antara muatan sejenis.
Konsep modern foton dikembangkan secara berangsur-angsur antara 1905-1917 oleh Albert Einstein untuk menjelaskan pengamatan eksperimental yang tidak memenuhi model klasik untuk cahaya. Model foton khususnya memperhitungkan ketergantungan energi cahaya terhadap frekuensi, dan menjelaskan kemampuan materi dan radiasi elektromagnetik untuk berada dalam kesetimbangan termal. Fisikawan lain mencoba menjelaskan anomali pengamatan ini dengan model semiklasik, yang masih menggunakan persamaan Maxwell untuk mendeskripsikan cahaya. Namun dalam model ini objek material yang mengemisi dan menyerap cahaya dikuantisasi. Meskipun model-model semiklasik ini ikut menyumbang dalam pengembangan mekanika kuantum, percobaan-percobaan lebih lanjut membuktikan hipotesis Einstein bahwa cahaya itu sendirilah yang terkuantisasi. Kuantum cahaya adalah foton.
Konsep foton telah membawa kemajuan berarti dalam fisika teoretis dan eksperimental, seperti laser, kondensasi Bose-Einstein, teori medan kuantum dan interpretasi probabilistik dari mekanika kuantum. Menurut model standar fisika partikel, foton bertanggung jawab dalam memproduksi semua medan listrik dan medan magnet dan foton sendiri merupakan hasil persyaratan bahwa hukum-hukum fisika memiliki kesetangkupan pada tiap titik pada ruang-waktu. Sifat-sifat intrinsik foton seperti muatan listrik, massa dan spin ditentukan dari kesetangkupan gauge ini.
Konsep foton diterapkan dalam banyak area seperti fotokimia, mikroskopi resolusi tinggi dan pengukuran jarak molekuler. Baru-baru ini foton dipelajari sebagai unsur komputer kuantum dan untuk aplikasi canggih dalam komunikasi optik seperti kriptografi kuantum

  
Foton awalnya dinamakan sebagai kuantum cahaya (das Lichtquant) oleh Albert Einstein.. Nama modern "photon" berasal dari kata Bahasa Yunani untuk cahaya φῶς, ditransliterasi sebagai phôs, dan ditelurkan oleh kimiawan fisik Gilbert N. Lewis, yang menerbitkan teori spekulatif  yang menyebutkan foton sebagai "tidak dapat diciptakan atau dimusnahkan". Meskipun teori Lewis ini tidak dapat diterima karena bertentangan dengan hasil banyak percobaan, nama barunya ini, photon, segera diadopsi oleh kebanyakan fisikawan. Isaac Asimov menyebut Arthur Compton sebagai orang yang pertama kali mendefinisikan kuantum cahaya sebagai foton pada tahun 1927 [
Dalam fisika, foton biasanya dilambangkan oleh simbol γ abjad Yunani gamma. Simbol ini kemungkinan berasal dari sinar gamma, yang ditemukan dan dinamakan oleh Villard, dan dibuktikan sebagai salah satu bentuk radiasi elektromagnetik pada 1914 oleh Ernest Rutherford dan Edward Andrade.
Dalam kimia dan rekayasa optik, foton biasanya dilambangkan oleh h \nu, energi foton, h adalah konstanta Planck dan abjad Yunani \nu adalah frekuensi foton. Agak jarang ditemukan adalah foton disimbolkan sebagai hf, f di sini melambangkan frekuensi.

Foton tidak bermassa, tidak memiliki muatan listrik, dan tidak meluruh secara spontan di ruang hampa. Sebuah foton memiliki dua keadaan polarisasi yang dimungkinkan, dan dapat dideskripsikan dengn tiga parameter kontinu: komponen-komponen vektor gelombang, yang menentukan panjang gelombangnya (\lambda) dan arah perambatannya. Foton adalah boson gauge untuk elektromagnetisme, dan sebab itu semua bilangan kuantum lainnya seperti bilangan lepton, bilangan baryon atau strangeness bernilai persis nol.
Foton diemisikan dalam banyak proses alamiah, contohnya ketika muatan dipercepat, saat transisi molekuler, atomik atau nuklir ke tingkat energi yang lebih rendah, atau ketika sebuah partikel dan antipartikel bertumbukan dan saling memusnahkan. Foton diserap dalam proses dengan waktu mundur (time-reversed) yang berkaitan dengan yang sudah disebut di atas: contohnya dalam produksi pasangan partikel-antipartikel, atau dalam transisi molekuler, atomik atau nuklir ke tingkat energi yang lebih tinggi.
Dalam ruang hampa foton bergerak dengan laju c (laju cahaya). Energinya E dan momentum p dihubungkan dalam persamaan E=p c, di mana p merupakan nilai momentum. Sebagai perbandingan, persamaan terkait untuk partikel dengan massa m adalah E^{2}=c^{2} p^{2} + m^{2} c^{4}, sesuai dengan teori relativitas khusus.




   
Diagram Feynman pertukaran foton virtual (dilambangkan oleh garis gelombang dan gamma, \gamma) antara sebutir positron dan elektron.


{ sekilas mengenai momentum dan energi  untuk mengerti tumbukan foton   }

Dalam fisika, momentum atau pusa adalah besaran yang berhubungan dengan kecepatan dan massa suatu benda.

 

    

Ayunan Newton membuktikan adanya Hukum kekekalan momentum  


Dalam mekanika klasik, momentum (dilambangkan dengan P) ditakrifkan sebagai hasil perkalian dari massa dan kecepatan, sehingga menghasilkan vektor.
Momentum suatu benda (P) yang bermassa m dan bergerak dengan kecepatan v diartikan sebagai ::
\mathbf{P}= m \mathbf{v}\,\!
Massa merupakan besaran skalar, sedangkan kecepatan merupakan besaran vektor. Perkalian antara besaran skalar dengan besaran vektor akan menghasilkan besaran vektor. Jadi, momentum merupakan besaran vektor. Momentum sebuah partikel dapat dipandang sebagai ukuran kesulitan untuk mendiamkan benda. Sebagai contoh, sebuah truk berat mempunyai momentum yang lebih besar dibandingkan mobil yang ringan yang bergerak dengan kelajuan yang sama. Gaya yang lebih besar dibutuhkan untuk menghentikan truk tersebut dibandingkan dengan mobil yang ringan dalam waktu tertentu. (Besaran mv kadang-kadang dinyatakan sebagai momentum linier partikel untuk membedakannya dari momentum angular).

Hukum Kekekalan Momentum

Sama seperti energi, dalam kondisi tertentu, momentum suatu sistem akan kekal atau tidak berubah. Untuk memberikan pemahaman mengenai hal tersebut, maka akan digunakan konsep Pusat Massa. Misal jika ada sebuah sistem yang terdiri dari beberapa benda dengan massa \mathbf{m_1}, \mathbf{m_2}, \mathbf{.....}. bergerak dengan kecepatan masing-masing adalah \mathbf{v_1}, \mathbf{v_2}, \mathbf{.....}., maka kecepatan pusat massa sistem tersebut adalah :
\mathbf{v_{cm}} = { \displaystyle\sum m_i \mathbf{v}_i \over \displaystyle\sum m_i }.
Dan jika sistem tersebut bergerak dengan dipercepat dengan percepatan masing-masing adalah \mathbf{a_1}, \mathbf{a_2}, \mathbf{.....}., maka percepatan pusat massa sistem tersebut adalah :
\mathbf{a_{cm}} = { \displaystyle\sum m_i \mathbf{a}_i \over \displaystyle\sum m_i }.
Sekarang jika benda-benda tersebut masing-masing diberi gaya \mathbf{F_1}, \mathbf{F_2}, \mathbf{.....}., maka benda-benda tersebut masing-masing memiliki percepatan :
\mathbf{a_{i}} = { \mathbf{F_i} \over m_i }.
Sehingga percepatan pusat massa sistem dapat dinyatakan sebagai :
\mathbf{a_{cm}} = { \displaystyle\sum \mathbf{F}_i \over \displaystyle\sum m_i }.
Notasi \displaystyle\sum \mathbf{F}_i. merupakan notasi yang menyatakan resultan gaya yang bekerja pada sistem tersebut. Jika resultan gaya yang bekerja pada sistem bernilai nol (\displaystyle\sum \mathbf{F}_i = 0), maka sistem tersebut tidak dipercepat (\displaystyle\sum \mathbf{a}_i = 0). Jika sistem tidak dipercepat, artinya sistem tersebut kecepatan pusat massa sistem tersebut konstan (\mathbf{v_{cm}} = constant). Jadi dapat disimpulkan bahwa :
\displaystyle\sum m_i \mathbf{v}_i = constant.
Notasi di atas merupakan notasi dari hukum kekekalan momentum. Jadi total momentum suatu sistem akan selalu kekal hanya jika resultan gaya yang bekerja pada sistem tersebut bernilai nol.


Permainan biliar  

Kecuali karena kehilangan amat kecil akibat friksi dan transfer panas, momentum disimpan pada stik biliar. Ketika satu bola mengenai bola lain dan berhenti, semua momentumnya dipindahkan ke bola lainnya.
Simbol umum p, p
Satuan SI kg m/s or N s



KERJA, ENERGI DANKERJA, ENERGI DAN
MOMENTUMMOMENTUM
 Merupakan konsep alternatif untuk menyelesaikanMerupakan konsep alte...   
APAKAH ENERGI ITU?APAKAH ENERGI ITU?
 Seseorang yang sedang mengalami kelaparan yangSeseorang yang sedang mengalami kelap...  
 BENTUK ENERGI LAINBENTUK ENERGI LAIN
 Energi listrik: energi potensial elektromagnetikEnergi listrik: energi potensial el... 
Impuls dan MomentumImpuls dan Momentum
 Dalam peristiwa sehari-hari seringkaliDalam peristiwa sehari-hari seringkali
dida...  
 TUMBUKANTUMBUKAN
'
22
'
112211 vmvmvmvm +=+
 Gaya-gaya yang bekerja pada proses tumbukanGaya-gaya yang bekerja pada prose...