Selasa, 17 Mei 2022
AMNIMARJESLOW GOVERNMENT Carrying SMART_THING @ IF_EC_ET_I ( Inner Formulation _ Energy Current _ Extra T-rest-trial _ Initial ) welcome Human Sense generate to be Adaptive Bio -Tech
5PEWrof4usJaGQ8Nbzc0aNbskzdaC-W2099QOyKAl0O6UtfYYKxVtQL8V3ecBTnsu2-9jwguyBemShp-6PdPWjy0Dh63euU2j70BMWTIDRow5iu1T_S-cqFMrPxr7RwxGmEjGBFWToqjPen2-QhBaL3hNGwGrmQQjXSSrbd_tEWQ4sRRY8ao-zhNBFhZp3YRf2cd098WBms9CdMBo-QtVsa6gifTCDvPF1quo6diYVao5Y_CPT5yJAnRr1JH28j3MtD83LzJ-ur-_8PFpTzzy0A4TSCiH23rhgQCFQEL5az1AK-x-bhNHM17v8QqJJv18r5wnB4hWJdlcqYLUoC5BT9g4DSFV2WhY9lEohme5kk_kE3L4-IMYGHAjde9L7CUHgGAB1l7tMmV6QBydgjp7jMF0Rb1sYuCCMUZM11nujFUQ8GoJuN-mlfG57nkB__7gR2VbS4weneRI7_vAtqwJ2BStNMBgL2Z77INIpjfFTzdIsQx8aV5YyForSTng58_VqsAB9_JyMHPlHsGY_zjRv5NHrb8tDWvBhC5aB_Mk2lAteSzr5ujNzPmRvI16dkctnmdj1RwavVIjAGVuZqDcxKzCUEUSHaOL9nU5_neFpvDks-qZ1JGMvYdcrqdd_Ko5cVejnZgFPQfk7E_x4q868icQQw66eNlAY/s320/20220516_202904.mp4" style="display: block; padding: 1em 0; text-align: center; ">
SMART_ THING Bio-Tech
_____________________
1. Big Data
2. IOT
3. Artificial Inteligence
4. Deep Learning
5. Neura Link
6. Meta verse
7. Human Machine Adaptive
8. Robotic Controlling
9. Implant networking communication support
10.2 nucleus and five sensoring + e_SMART
11.Key Form at group Function espspecially Electronic
Key to pairs hole signal match sense .
I . The Artificial Eye
______________________
Human - like cyborg eye could power itself using sunlight
research and development a spherical that mimics structure of the human eye .
eye start :
1. the eyeball ( globe ) ; 3 main layers : the sclera , the ueva , and the retina .
2. the orbit ( the tissue surrounding the eye ball )
3. the adnexal ( acvesorry ) structures such as the eyelids and tear glands .
Artificial inteligence may further enhance the capabilities of imaging system
specialized imaging and tracking can give .
II . Electronic Skin Function and Application
______________________________________________
Electronic Skin , a system that allows ROBOTS to produce tactile sensations . it is not only simple in structure , but also can be processed into various shape , and can even be attached to the surface of the device like clothes , allowing the ROBOTS to perveive information such as the location , orientation , and hardness of the object. basic functions of electronic skin : from obtaining physical stimulation to distrinuted sensor array ; Preprocess the sensor signal ; the signal is transmitted wirelessly to higher level systems ( such a smart phones ), the electronic skin is equipped with highly sensistive conductive nanomaterials , which can accurately cause slight tremors of the electrical changes of the muscle group . at the same time , the electronic skin is extensible ( for examples , it support joint movement ) , and can even from integrated chemical sensors and biosensors . therefore electronic skin enable us to perceive different shape and textures , temperature changes , and different contact pressure levels .and this is an integrated , scalable sensor network that can provide tactile and thermal signals to the brain , allowing us to operate safely and effectively in surrounding environment . Inspired bybthese features of human skin , researches are working hard to create a flexible , scalable , and highly sensitive electronic device. therefore , the development of electronic skin has become a research hotspot , especially in the fields of intelligent robots and electronic medicine .
III . Adaptive Microelectronics , nanomaterials for support Adaptive Biotech
____________________________________________________________________________
Adaptive Microelectronics for substitution at to sensors and artificial muscles on the microscale , future micro electronics
will be able to take flexible muscles .
Flexible and adaptive microelectronics is considered and innovation driver for new and more effective biomedical applications . these include , for example , the treatment of damaged nerve bundles , chronic pain , or the control of artificial limbs. for this to work , close contact between electronics and neural tissues is essential for effective electrical and mechanical coupling . in addition , potential application arise from the production of tiny and flexible surgical tools . adaptive microelectronics are able tonposition them selves in a controlled manner , manipulate biological tissues, and respond to their environment by analyzing sensors signals. device whose motion can be controlled by electroactive polymer structures , a combination of these properties for application in a dynamic changing organism at the micrometer scale so far adaptive and inteligent microelectronics and respond to their environment by analyzing sensor signal .
IV . Adaptive SMART RADIO connecting between networks Adaptive BioTech
by reconfigurable AI meta surfaces
______________________________________________________________________
Future wireless networks are expected to constitute a distributed inteligent wireless communication , sensing , and computing platform , which will have the challenging requirement of interconnecting the physical and digital world in seamless and sustainable manner . two main factor : 1. control wireless communication , 2. current operation and consume of power ( Power Digital management system ) .
we must to connection adaptive biotech network wit reconfigurable Meta Surface and redesign network communication at real time .
V. Neurons and Forward Propagation in Neural Net
__________________________________________________
In human biogenetic networks there are several complications, especially in the bonding of neurons, dendrids and the cleavage phase, this is gradually starting to be applied to the internet of things network outside the standard network system of star links and delta links which are now in the form of artificial intelligence with several refinements and formulas , if the study of mathematics requires several statistical methods in network optimization as well as algebraic techniques including: permutations, combinations, variances, probability theory, probability theory, game theory, function series theory, and derivatives 1, 2 and third as real and virtual real time timers. as TX and RX network inverters follow advanced integrals for the direction of the network setup program , let 's look at some of the networking possibilities in the aspect of Artificial intelligence , machine learning , deep learning .
Introduction :
what is a Neural Network, how it is structured, what are the Optimizers and their relevance in neural networks. we will dive deep into how the neurons or the nodes for the Artificial Neural Network are estimated.
Also, we will see what are the techniques available to update the weights related to these nodes to converge faster to the minimum loss function.
Subject tech :
1. Estimation of Neurons or Nodes
2. Squashing of Neural Net
3. Forward Propagation
Applications of Artificial Neural Networks :
Have you ever wondered how the human brain functions? There’s a good possibility you learned about it in school. The function of ANN is the same as that of neurons in the human nervous system. Let’s get this Artificial Neural Networks lesson started. Artificial Neural Networks (ANNs) are currently the most widely used Machine Learning techniques. These Neural Networks were first developed in the 1970s, but due to recent increases in computing power, they have become extremely popular, and they are now found almost everywhere. Neural Networks power the intelligent interface that keeps you engaged in every program you use.
A computational network grounded on natural neural networks that construct the structure of the human brain is known as an artificial neural network. Artificial neural networks, like human smarts, have neurons that are coupled to each other in different layers of the networks.
In the sphere of machine literacy, artificial neural networks are the most important literacy models. They can arguably negotiate every exertion that the human brain can, still, they may work in a different way than a real human brain.
What is Artificial Neural Network? :
The term “Artificial Neural Network” is derived from biological neural networks, which define the structure of the human brain. Artificial neural networks, like the human brain, have neurons in multiple layers that are connected to one another. These neurons are referred to as nodes.
In ANN ( Artificial Neural Networks ) , dendrites from biological neural networks represent inputs, cell nuclei represent nodes, synapses represent weights, and axons represent the output.
ANNs are nonlinear statistical models that demonstrate a complex relationship between inputs and outputs in order to uncover a new pattern. Artificial neural networks are used for a range of applications, including image recognition, speech recognition, machine translation, and medical diagnosis.
The fact that ANN learns from sample data sets is a significant advantage. The most typical application of ANN is for random function approximation. With these types of technologies, one can arrive at solutions that specify the distribution in a cost-effective manner. ANN can also offer an output result based on a sample of data rather than the complete dataset. ANNs can be used to improve existing data analysis methods due to their high prediction capabilities.
Artificial Neural Networks Architecture :
A node layer contains an input layer, one or more hidden layers, and an output layer in ANNs. Each node, or artificial neuron, has its own weight and threshold and is connected to the others. When a node’s output hits a certain threshold, it is activated, and data is sent to the next tier of the network. No data is sent to the next tier of the network if this is not the case.
The performance of a neural network is influenced by a number of parameters and hyperparameters. The output of ANNs is mostly determined by these variables. Weights, biases, learning rate, batch size, and other parameters are among them. Each node in the ANN has a certain amount of weight.
Weights are assigned to each node in the network. The weighted sum of the inputs and the bias is calculated using a transfer function. To generate the output, the weighted total is supplied as an input to an activation function. Activation functions determine whether or not a node should fire. Those who are fired are the only ones who make it to the output layer. There are several activation functions that can be used depending on the type of task we’re doing. Sigmoid, RELU, Softmax, tanh, etc. are some of the most commonly utilized activation functions in Artificial Neural Networks.
Working on Artificial Neural Networks :
A neuron is essentially a node with numerous inputs and one output, while a neural network is made up of many interconnected neurons. To execute their jobs, neural networks must go through a ‘learning phase,’ in which they must learn to correlate incoming and outgoing signals. They then start working, receiving input data and generating output signals based on the accumulated data.
The information is taken in numerical form by the input node. The data represents an activation value, with a number assigned to each node. The stronger the activation, the higher the number. The activation value is passed to the next node based on weights and the activation function. Each node calculates and updates the weighted sum based on the transfer function (activation function). It then performs an activation function. This function is specific to this neuron. The neuron then decides whether or not it needs to convey the signal. The signal extension is determined by the weights being adjusted by the ANN.
The activation travels across the network until it reaches the destination node. The information is shared in an understandable manner by the output layer. The network compares the output and expected output using the cost function. The discrepancy between the actual and projected values is referred to as the cost function. The lower the cost function, the closer the result is to the desired one.
The cost function can be minimized using one of two methods:
1. Back Propagation: Backpropagation is at the heart of neural network training. It is the most important way for neural networks to learn. The data enters the input layer and travels across the network to the output layer. The cost function will then equate the output with the intended output. If the cost function’s value is high, the information is returned, and the neural network learns to reduce the cost function’s value by modifying the weights. The error rate is reduced and the model becomes definite when the weights are properly adjusted.
2. Forward Propagation: The data enters the input layer and travels across the network to the output value. The value is compared to the expected results by the user. Calculating mistakes and transmitting information backwards is the next stage. The user can now train the neural network and update the weights. The user can alter weights simultaneously thanks to the structured algorithm. It will assist the user in determining which neural network weight is accountable for the error.
Types of Artificial Neural Network
There are two important types of ANNs –
1) FeedForward Neural Network:
The information flow in feedforward ANNs is only in one direction. That is, data flows from the input layer to the concealed layer and then to the output layer. There are no feedback loops. These neural networks are commonly employed in supervised learning for tasks like classification and image recognition. We use them when the data is not in consecutive order. Feedforward networks are comparable to convolutional neural networks (CNNs).
2) Feedback Neural Network:
The feedback loops are an element of the feedback ANNs. Such neural networks, such as recurrent neural networks, are mostly used for memory retention. These networks are best used in situations where the data is sequential or time-dependent. The feedback loops define recurrent neural networks (RNNs).
ANN Learning Techniques
1. Supervised Learning: The user trains the model with labelled data in this learning method. It indicates that some data has already been tagged with the proper responses. Learning that takes place in the presence of a supervisor is referred to as supervised learning.
2. Unsupervised Learning: The model does not require supervision in this learning. It usually deals with data that hasn’t been labelled. The user gives permission for the model to categorize the data on its own. It organizes the data based on similarities and patterns without requiring any prior data training.
3. Reinforcement Learning: The output value is unknown in this case, but the network provides feedback on whether it is correct or incorrect. It’s referred to as “Semi-Supervised Learning.”
Artificial Neural Network Applications
Following are some important ANN Applications –
1. Speech Recognition: Speech recognition relies heavily on artificial neural networks (ANNs). Earlier speech recognition models used statistical models such as Hidden Markov Models. With the introduction of deep learning, several forms of neural networks have become the only way to acquire a precise classification.
2. Handwritten Character Recognition: ANNs are used to recognize handwritten characters. Handwritten characters can be in the form of letters or digits, and neural networks have been trained to recognize them.
3. Signature Classification: We employ artificial neural networks to recognize signatures and categorize them according to the person’s class when developing these authentication systems. Furthermore, neural networks can determine whether or not a signature is genuine.
4. Medical: It can be used to detect cancer cells and analyze MRI pictures in order to provide detailed results.
5. Adaptive technology .
6. Simulation of image Push and Pull .
7. Networking digitally Intelligence TX and RX .
8. Computer Program Language .
9. Decision analysis .
10.Forecasting and Probability Prosentage .
Standard Formulation :
An artificial neural network (ANN) is a data processing paradigm based on how biological nervous systems, such as the brain, process data.
Because of their universal approximation capabilities and flexible structure, ANNs are effective data-driven modelling tools for nonlinear systems dynamic modelling and identification.
It provides a framework for combining different machine learning algorithms to process large amounts of data. Without task-specific instructions, a neural network can “learn” to execute tasks by examining examples.
Future Biotech to become living things
_______________________________________
If you reside in or around Pearland, Texas, and are looking for the best plumbers that go above and beyond in the plumbing industry with knowledge, make dexterity, and creativity, you've just found us. In addition to providing the highest craftsmanship, we place a focus on providing obedient, national plumbing services to ensure complete satisfaction on every plumbing job we complete or administration us grow. Our goal is to make excellent administration accessible and reasonable for everyone. We can acquire finance to achieve this.
BalasHapusAt the point when you need plumbing administrations in a rush the best thing for you to do is call Plumbing Richmond. Having a functioning pipes framework is basic to any home or business. Plumbing issues can make your life hopeless. Plumbing Richmond needs to assist you with having a smooth pipes framework. In the event that you need a crisis handyman that is an assistance that Plumbing Richmond offers as well. Our professionals are affirmed in plumbing administrations and offer incredible client support
BalasHapus